

	Form Number	EXC-01-02-02A
Form:	Issue Number and Date	2/3/24/2022/2963
	Number and Date of Revision or Modification	05/12/2022
Course Syllabus	Deans Council Approval Decision Number	2/3/24/2023
	The Date of the Deans Council Approval Decision	23/01/2023
	Number of Pages	08

1.	Course Title	Method of Applied Mathematics			
2.	Course Number	0331471			
2	Credit Hours (Theory, Practical)	3			
3.	Contact Hours (Theory, Practical)	3			
4.	Prerequisites/ Corequisites	0331412			
5.	Program Title	B.S.c. in Mathematics			
6.	Program Code				
7.	School/ Center	Science			
8.	Department	Mathematics			
9.	Course Level	Elective Specialization Requirement			
10.	Year of Study and Semester (s)	4 year			
11.	Other Department(s) Involved in				
	Teaching the Course				
12.	Main Learning Language				
13.	Learning Types	■Face to face learning □Blended □Fully online			
14.	Online Platforms(s)				
15.	Issuing Date	7/10/2024			
16.	Revision Date	7/10/2024			

17. Course Coordinator:

Name: Nabil Shawagfeh	Contact hours: Sun, Tue (11-12)	
	Mon, Wed (10-11)	
Office number:	Phone number: 22078	
Email: shawagnt@ju.edu.jo		

18. Other Instructors:

ime:	
fice number:	
one number:	
nail:	
ontact hours:	
ime:	
fice number:	
one number:	
nail:	
ontact hours:	

19. Course Description:

Integral equations; integral transforms; asymptotic techniques: algebraic equations and integrals; complex analytic methods: conformal mapping and harmonic analysis.

20. Program Student Outcomes (SO's):

(To be used in designing the matrix linking the intended learning outcomes of the course with the intended

learning outcomes of the program)

- 1. Identify, formulate, and solve broadly-defined technical or scientific problems by applying knowledge of Mathematics and Science and/or technical topics to areas relevant to the discipline.
- 2. Formulate and design a model, process, procedure or program to meet desired needs.

21. Course Intended Learning Outcomes (CLO's):

(Upon completion of the course, the student will be able to achieve the following intended learning outcomes)

- 1. Recognize and classify linear integral equations: Fredholm and Volterra IEs.
- 2. Use different methods to find exact and approximate solutions of Fredholm and Volterra IEs.
- **3.** Use Laplace transform to solve Volterra IEs.
- 4. Recognize the gauge function and order symbols.
- 5. Use perturbation method to find approximate solution of algebraic equations.
- 6. Use perturbation technique to find approximate solution of ordinary differential equation.

- 7. Determine the straightforward approximation of Duffing equation for small ϵ & uniform approximation
- 8. Introduce the notion of complex functions and mapping.
- 9. Solve Dirichlet problems using harmonic functions under analytic mappings
- **10.** Recognize the conforml mappings and using conformal mappings to solve larger class of boundary value problem.

Course	The learning levels to be achieved									
CLOs	Remembering	Understanding	Applying	Analysing	evaluating	Creating				
1	V									
2	V	V	v	V	V					
3	V	٧	٧							
4	V									
5	V	V	٧	v	V					
6		٧	٧	v	V					
7		٧	٧	v	v					
8	V	V								
9		V	٧	V						
10	v	V	٧	v						

22. The matrix linking the intended learning outcomes of the course with the intended learning outcomes

of the program:

Program SO's								
Course CLO's	SO (1)	SO (2)	SO (3)	SO (4)	SO (5)	SO (6)	SO (7)	SO (8)
1- Recognize and classify linear integral								
equations: Fredholm and Volterra IEs.	•	•						
2- Use different methods to find exact and								
approximate solutions of Fredholm and	•	•						
Volterra IEs.								
3- Use Laplace transform to solve Volterra IEs.	•	•						
4 -Recognize the gauge function and order	-	_						
symbols.	•	•						
5 -Use perturbation method to find	•							
approximate solution of algebraic equations.	•	•						
6- Use perturbation technique to find								
approximate solution of ordinary differential	•	•						
equation.								
7- Determine the straightforward								
approximation of Duffing equation for small $\boldsymbol{\epsilon}$	•	•						
& uniform approximation								
8- Introduce the notion of complex functions								
and mapping.	•	•						
9- Solve Dirichlet problems using harmonic								
functions under analytic mappings	•	•						
10- Recognize the conforml mappings and								
using conformal mappings to solve larger	•	•						
class of boundary value problem.								

23. Topic Outline and Schedule:

Week	Lecture	Topic	CLO/s Linked to the Topic	Learning Types (Face to Face (FF)/ Blended/ Fully Online)	Platform Used	Synchronous (S) / Asynchronous Lecturing	Evaluation Methods	Learning Resources
1	1.1	Integral equations with separable kernels	1, 2	Face to Face	Moodle		Exam	Text book
	1.2	Integral equations with separable kernels	1, 2	Face to Face	Moodle		Exam	Text book
2	2.1	Integral equations with separable kernels	1, 2	Face to Face	Moodle		Exam	Text book
-	2.2	Integral equations with separable kernels	1, 2	Face to Face	Moodle		Exam	Text book
3	3.1	Method of successive approximations	1, 2	Face to Face	Moodle		Exam	Text book
	3.2	Method of successive approximations	1, 2	Face to Face	Moodle		Exam	Text book
4	4.1	Fredholm Theorems	1, 2	Face to Face	Moodle		Exam	Text book
	4.2	Fredholm Theorems	1, 2	Face to Face	Moodle		Exam	Text book
	5.1	First Exam		Face to Face	Moodle		Exam	Text book
5	5.2	Laplace transform for solving VIE	3	Face to Face	Moodle		Exam	Text book
	6.1	First Exam		Face to Face	Moodle		Exam	Text book
6	6.2	Gauge function and order symbols	4	Face to Face	Moodle		Exam	Text book
7	7.1	Perturbation method to algebraic equations	5	Face to Face	Moodle		Exam	Text book
	7.2	Perturbation	5	Face to Face	Moodle		Exam	Text book

الجامعة الاردنية

		methodto algebraic					
		equations					
8	8.1	Perturbation technique to ODE	6	Face to Face	Moodle	Exam	Text book
	8.2	Perturbation technique to ODE	6	Face to Face	Moodle	Exam	Text book
		The straight forward approximation				_	
	9.1	Of Duffing equation	7	Face to Face	Moodle	Exam	Text book
9		The straight forward					
		approximation					
	9.2	Of Duffing	7	Face to Face	Moodle	Exam	Text book
		equation					
	10.1	Uniform Expansion Lindstedt-Poincare Method	7	Face to Face	Moodle	Exam	Text book
10	10.2	Uniform Expansion Lindstedt-Poincare Method	7	Face to Face	Moodle	Exam	Text book
	11.1	Mid Term		Face to Face	Moodle	Exam	Text book
11		Complex					
	11.2	functions and	8	Face to Face	Moodle	Exam	Text book
		mapping.					
		Complex					
	12.1	functions and	8	Face to Face	Moodle	Exam	Text book
12		mapping.					
		Complex	_				
	12.2	functions and	8	Face to Face	Moodle	Exam	Text book
	42.5	mapping.					-
13	13.1	Harmonic function	9	Face to Face	Moodle	Exam	Text book
	13.2	Harmonic function	9	Face to Face	Moodle	Exam	Text book
14	14.1	Conforml mappings and	9	Face to Face	Moodle	Exam	Text book

الجامعة الاردنية

		boundary value problem.					
	14.2	Conforml mappings and	9	Face to Face	Moodle	Exam	Text book
		boundary value problem.					
	15.1	Conforml mappings and	10	Face to Face	Moodle	Exam	Text book
15	13.1	boundary value problem.	10		Woodic	Exam	TEXT BOOK
15	15.2	Conforml mappings and boundary value problem.	10	Face to Face	Moodle	Exam	Text book

24. Evaluation Methods:

Opportunities to demonstrate achievement of the CLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	CLO/s Linked to the Evaluation activity	Period (Week)	Platform
First Exam	20		1		
Mid Term	30		1,2		
Final Exam	50		1,2		

25. Course Requirements:

Each student must have:

- Computer

- Account on Microsoft Teams

26. Course Policies:

Class attendance of students at the beginning of the lecture is recoded. Assignment is given to the students at regular intervals for them to solve and submit. Late or no submission of assignments carries penalties or loss of grade points. Absences recorded in each lecture with making excuses, if any.

When absence from the test provides a formal excuse.

Exiting during the lecture since Formal justification or excuse forces. Mobile phone use in the classroom is Forbidden.

27. References:

A- Required book (s), assigned reading and audio-visuals:

1. Linear Integral Equations, R. P. Kanwal, 1971.

- 2. Introduction to Perturbation Techniques, A. H. Nayfeh, 1993.
- 3. Complex Variables and Applications, J. W. Brown & R. V. Churchill, 2009.
- B- Recommended books, materials, and media:
 - **1.** Linear and nonl inear i ntegra l equat ions, Abdul -Maj id Wazwaz 2011 . a f i rs t course in compl ex analys is w i th applicat ions, D . Z i I I , P . Shanahan 2003 .

28. Additional information:

Name of the Instructor or the Course Coordinator:	Signature:	Date:
Prof. Nabil Shawagfeh		
Name of the Head of Quality Assurance Committee/ Department:	Signature:	Date:
Prof. Manal Ghanem		
Name of the Head of Department:	Signature:	Date:
Prof. Baha Alzalg		
Name of the Head of Quality Assurance Committee/ School of Science:	Signature:	Date:
Prof. Emad A. Abuosba		
Name of the Dean or the Director:	Signature:	Date:
Prof. Mahmoud I. Jaghoub		